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Introduction
The detection of the binary neutron star merger
(BNS) GW170817 and its electromagnetic (EM)
counterparts marked the first joint gravitational
wave-electromagnetic observations. The use
of gravitational wave triggers is the most promising
strategy for detecting more kilonovae (KNe), the
faint optical transient associated with binary neu-
tron star and neutron star-black hole (NSBH) merg-
ers. However, new generations of optical telescopes
like the LSST are expected to make serendipitous
observations of kilonovae. We use KN models in-
terpolated through Gaussian process regression to
constrain kilonova parameters from incomplete light
curves. We focus on recovering the merger time
of the BNS, and consider the prospects for EM-
triggered gravitational wave searches.

EM triggered GW searches
Up to 200 kilonovae detected by LSST could be generated by BNS mergers associated with sub-threshold
gravitational wave signals.[6] While strategies are in place for the electromagnetic follow-up of gravitational
wave triggers, optimising searches for the serendipitous discovery of kilonovae could lead to more prospects
for multi-messenger astronomy.

Kilonova models

Figure 1: The tidal and
dynamical components of
the kilonova ejecta.[2]

Models of kilo-
nova light curves
are obtained from
time-resolved spec-
tra by Kasen
(2017).[2]Each kilo-
nova is made up
of a tidal and a
dynamical compo-
nent. These models
are the result of
computationally
expensive

radiative transfer simulations, and are therefore
available for only a discrete set of ejecta parame-
ters. We use Gaussian Process regression to extend
the models.

GW170817
Gravitational waves from two neutron stars coalesc-
ing were detected for the first time on 17th August
2017. These observations were followed by a kilo-
nova (AT 2017gfo) and a short GRB.

Figure 2: Complete UVOIR curves of AT 2017gfo.[1]

Gaussian Processes
A Gaussian process is defined as a collection of
random variables, any finite number of which
have a joint Gaussian distribution. Gaussian
processes are used to infer directly in function
space, by describing a distribution over functions.

Figure 3: Functions drawn from GP prior (a) and
posterior (b) i.e. prior conditioned by 5 noiseless data
points.[5]

Kilonovae

Figure 4: Observations of the KN associated with
GW170817 by Hubble. (NASA/ESA)

Kilonovae are the faint, mostly isotropically
emitting, long-lived optical and infrared tran-
sients associated with the merger of two neutron
stars (BNS) or of a neutron star with a black
hole (NSBH).

• Promising candidates for the electromag-
netic follow-up of gravitational wave obser-
vations of BNS and NSBH.

• New generations of telescopes will unveil
populations of kilonovae both with and
without GW triggers.

The ejected neutron-rich matter in kilonovae un-
dergoes rapid neutron capture (r-process) nu-
cleosynthesis. This process enriches the universe
with heavy elements such as gold and platinum.

Figure 5: Schematic view of the counterparts associated with BNS[4]
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Results

Figure 1: Parameter estimation on AT 2017 gfo DECam data, observations starting 3
days post-merger, g,r,i bands

We run a full parameter estimation on kilonova light curves, both simulated
and real. The kilonovae are made up of two components (tidal and dynamical),
each with three parameters:

• Lanthanide fraction Xlan

• Mass of ejecta mej

• Vvelocity of ejecta vk.

The merger time t0 and luminosity distance dL are also allowed to vary. We
use wide, flat priors for all parameters.
Figure 1 and Figure 2 show the results of the full parameter estimation on
g, r, i observations of AT 2017 gfo. In Figure 1, observations start 3 days after
the merger, while in Figure 2, observations start 1.2 days after the merger.
Figure 3 shows results for a simulated kilonova light curve, with a fixed lu-
minosity distance dL, for nightly g, r, i observations starting 2 days after the
merger.
In all cases, the merger time is accurately recovered, along with most of the
ejecta parameters. Fixing the luminosity distance dL removes some degenera-
cies in the ejecta parameters. As expected, constraints on the merger time are
tighter for earlier observation starting times. With a fixed luminosity distance,
the merger time can be recovered to within half a day for observations starting
2 days post-merger.

Figure 2: Parameter estimation on simulated AT 2017 gfo DECam data, observations
starting 1.2 days post-merger, g,r,i bands

Figure 3: Parameter estimation on simulated KN, observations starting 2 days post-
merger, fixed dL, g,r,i bands

Discussion
Using incomplete kilonova light curves, we can ac-
curately recover the merger time of BNS to
within one to three days, depending on when
observations of the transient start. All ejecta pa-
rameters are also recovered, with the largest source
of degeneracy coming from the luminosity distance.
This however can be fixed with host galaxy identifi-
cation. The recovery of the merger time from kilo-
nova light curves only is a promising prospect for
confirming sub-threshold or single detector gravita-
tional wave events.

References
[1] V. A. Villar et al., “The Combined Ultraviolet, Optical,

and Near-infrared Light Curves of the Kilonova Associated
with the Binary Neutron Star Merger GW170817,” (Dec.,
2017) , arXiv:1710.11576 [astro-ph.HE].

[2] D. Kasen et al., “Origin of the heavy elements in binary
neutron-star mergers from a gravitational-wave event,”
(Nov., 2017) , arXiv:1710.05463 [astro-ph.HE].

[3] G. Ashton et al., “Bilby: A user-friendly Bayesian inference
library for gravitational-wave astronomy,” arXiv e-prints
(Nov, 2018) arXiv:1811.02042, arXiv:1811.02042
[astro-ph.IM].

[4] B. D. Metzger and E. Berger, “What is the Most Promising
Electromagnetic Counterpart of a Neutron Star Binary
Merger?,” 746 no. 1, (Feb., 2012) 48, arXiv:1108.6056
[astro-ph.HE].

[5] C. E. Rasmussen and C. K. I. Williams, Gaussian
Processes for Machine Learning. The MIT Press, 2006.

[6] N. Setzer, C et al., “Serendipitous Discoveries of Kilonovae
in the LSST Main Survey: Maximising Detections of
Sub-Threshold Gravitational Wave Events,” (Feb, 2019)
499, arXiv:1812.10492 [astro-ph.IM].


