_ Constraiming binary neutron star merger times from

kilonova observations

Kilonovae are the faint, mostly isotropically
emitting, long-lived optical and infrared tran-
sients associated with the merger of two neutron

stars (BNS) or of a neutron star with a black
hole (NSBH).

A Gaussian process is defined as a collection of
random variables, any finite number of which
have a joint Gaussian distribution.  (Gaussian
processes are used to infer directly in function
space, by describing a distribution over functions.

e Promising candidates for the electromag-

netic follow-up of gravitational wave obser-
vations of BNS and NSBH.

e New generations of telescopes will unveil
populations of kilonovae both with and
without GW triggers.
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The ejected neutron-rich matter in kilonovae un-
dergoes rapid neutron capture (r-process) nu-
cleosynthesis. This process enriches the universe
with heavy elements such as gold and platinum.

Figure 3: Functions drawn from GP prior (a) and
posterior (b) i.e. prior conditioned by 5 noiseless data
points.|5]

Up to 200 kilonovae detected by LSST could be generated by BNS mergers associated with sub-threshold
gravitational wave signals.|6| While strategies are in place for the electromagnetic follow-up of gravitational
wave triggers, optimising searches for the serendipitous discovery of kilonovae could lead to more prospects
for multi-messenger astronomy.

Figure 4: Observations of the KN associated with
GW170817 by Hubble. (NASA /ESA)
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Models of kilo-

nova light curves

Gravitational waves from two neutron stars coalesc-
ing were detected for the first time on 17th August

2017. These observations were followed by a kilo-
nova (AT 2017gfo) and a short GRB.
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Figure 1: The tidal and are  the .result of
dynamical components of Compu‘Fatlonally
the kilonova ejecta.|2| CXpensive

radiative transfer simulations, and are therefore
available for only a discrete set of ejecta parame-

w1 u | ters. We use GGaussian Process regression to extend
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Figure 2: Complete UVOIR curves of AT 2017gfo.[1]
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Figure 5: Schematic view of the counterparts associated with BNS|4]
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Figure 2: Parameter estimation on simulated AT 2017 gfo D!
starting 1.2 days post-merger, g,r,7 bands
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Figure 1: Parameter estimation on AT 2017 gfo DECam data,

vej-b Xlan-b

fCam data, observations

We run a full parameter estimation on kilonova light curves, both simulated
and real. The kilonovae are made up of two components (tidal and dynamical),
each with three parameters:

e [Lanthanide fraction X;,,
e Mass of ejecta me;
e Vvelocity of ejecta vy.

The merger time ¢35 and luminosity distance dj are also allowed to vary. We
use wide, flat priors for all parameters.

Figure 1 and Figure 2 show the results of the tull parameter estimation on
g, r,1 observations of AT 2017 gfo. In Figure 1, observations start 3 days after
the merger, while in Figure 2, observations start 1.2 days after the merger.
Figure 3 shows results for a simulated kilonova light curve, with a fixed lu-
minosity distance dj,, for nightly g, r,7 observations starting 2 days after the
merger.

In all cases, the merger time is accurately recovered, along with most of the
ejecta parameters. Fixing the luminosity distance dj, removes some degenera-
cies in the ejecta parameters. As expected, constraints on the merger time are
tighter for earlier observation starting times. With a fixed luminosity distance,
the merger time can be recovered to within half a day for observations starting

observations starting 3 2 days post-merger.

2.0570%

mej

0.141505

vej

1384032

Xlan

0.0170:9

mej-b

vej-b

0.20
4.457 5

Xlan-b

t0 mej vej Xlan mej-b vej-b Xlan-b

Figure 3: Parameter estimation on simulated KN, observations starting 2 days post-
merger, fixed dr, g,7,7 bands
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Using incomplete kilonova light curves, we can ac-
curately recover the merger time of BNS to
within one to three days, depending on when
observations of the transient start. All ejecta pa-
rameters are also recovered, with the largest source
of degeneracy coming from the luminosity distance.
This however can be fixed with host galaxy identifi-
cation. The recovery of the merger time from kilo-
nova light curves only is a promising prospect for
confirming sub-threshold or single detector gravita-
tional wave events.
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